Least-Squares Finite Element Methods for Quantum Electrodynamics
نویسندگان
چکیده
منابع مشابه
Least-Squares Finite Element Methods for Quantum Electrodynamics
A significant amount of the computational time in large Monte Carlo simulations of lattice field theory is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and ill-conditioned, a...
متن کاملLeast-Squares Finite Element Methods
Least-squares finite element methods are an attractive class of methods for the numerical solution of partial differential equations. They are motivated by the desire to recover, in general settings, the advantageous features of Rayleigh–Ritz methods such as the avoidance of discrete compatibility conditions and the production of symmetric and positive definite discrete systems. The methods are...
متن کاملLeast-squares Finite Element Methods for Quantum Chromodynamics
A significant amount of the computational time in large Monte Carlo simulations of lattice quantum chromodynamics (QCD) is spent inverting the discrete Dirac operator. Unfortunately, traditional covariant finite difference discretizations of the Dirac operator present serious challenges for standard iterative methods. For interesting physical parameters, the discretized operator is large and il...
متن کاملFinite Element Methods of Least-Squares Type
We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous th...
متن کاملMultilevel Boundary Functionals for Least-squares Mixed Finite Element Methods
For least-squares mixed nite element methods for the rst-order system formulation of second-order elliptic problems, a technique for the weak enforcement of boundary conditions is presented. This approach is based on least-squares boundary functionals which are equivalent to the H ?1=2 and H 1=2 norms on the trace spaces of lowest-order Raviart-Thomas elements for the ux and standard continuous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2010
ISSN: 1064-8275,1095-7197
DOI: 10.1137/080729633